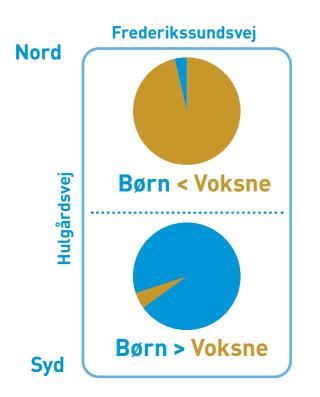
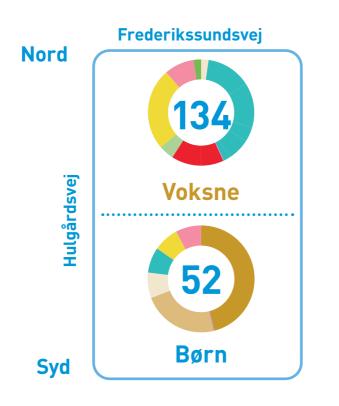
Design af trivselsområder for vores yngste beboere Hulgårdsplads

december 2020

OPSUMMERING OG RESULTATER

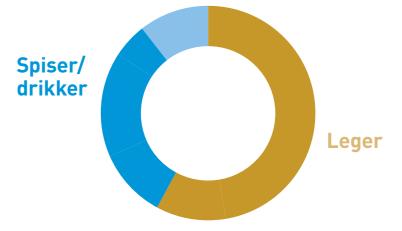

En store tak til følgegruppen og vores dataindsamlere!


Tanja Møller Jensen, Bispebjerg LU sekretariat
Signe Dehn Sparrevohn, Bispebjerg LU sekretariat
Line Køllgård, gadepladsmedarbejder, Socialforvaltningen
Lena, gadepladsmedarbejder, Socialforvaltningen
Greta Nedergaard, TMF, Mobilitet og luftforurening og børnelivszoner
Zahra Jabr, Rødderne, medarbejder
Elise Sylvest Elmgren, TMF byrumsforvalter-drift og vedligeholdelse
Lajla Nielsen, Hulgårdsplads Forældregruppen
Dan Kreutzfelt, næstformand Bispebjerg Lokaludvalg
Thilde Demant Hessellund, Bispebjerg LU sekretariat
Eva Campos, dataindsamler
Brian Grønvald Hansen, Pædagogisk fagansvarlig Hulgårds Plads
Anders Jensen, Miljøpunkt Nørrebro
Pernille Pedersen, Miljøpunkt Nørrebro

Byliv og Luftforurening Hvad har vi lært?

Byliv: 4 primære observationer* Hvad har vi lært?

Aktivitet

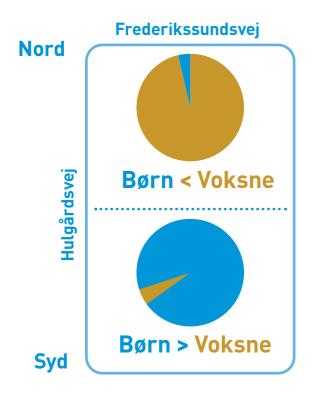

Pladsen er meget aldersopdelt

Flere voksne i den nordlige del og flere børn i den sydlige del

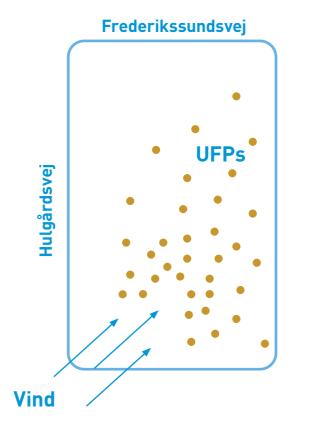
Om eftermiddagen var der flere voksne end børn og meget mere diversitet i

stationære aktiviteter

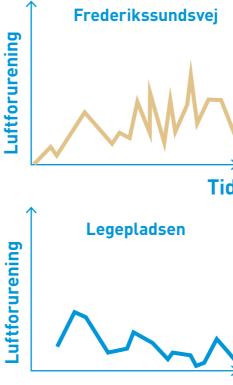
Flest børn opholder sig på legepladsen om morgen, men ofte er der også mange børn om eftermiddagen



Om morgenen, er over 50% af børnene er fysisk aktive mens 31% spiser/drikker (resten bruger elektronik eller slapper af.)


*Data indsamlet torsdag d.18 juni 2020, i tidsrummet 07:00 –18:00. (Solskin, 21-26 grader C)

Byliv og luftforurening: 4 primære observationer* Hvad har vi lært?

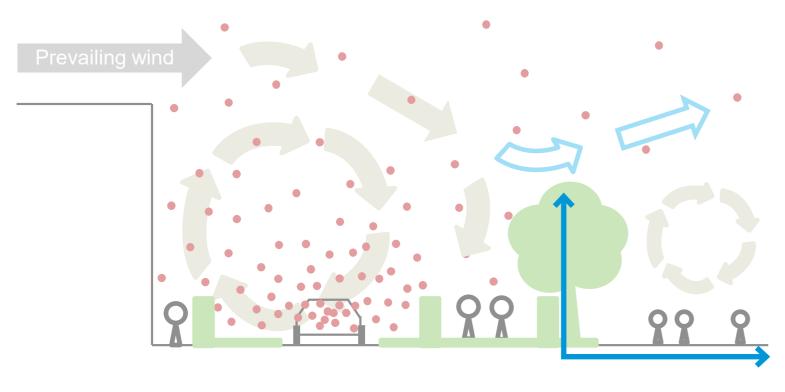

Pladsen er meget aldersopdelt

Flere voksne i den nordlige del og flere børn i den sydlige del

Luftkvalitet ved legepladsen er afhængigt af eksterne faktorer, såsom myldretid og

skift i vindretninger

Over 50% leger om morgenen Tid Aktivitet Legeplads UFP Tid Tid Flest børn opholder Om morgenen er luftkvaliteten ved sig på legepladsen legepladsen den samme om morgen, når som luftkvaliteten på luftkvaliteten er Frederikssundsvej værst og da de er fysisk aktive indånder

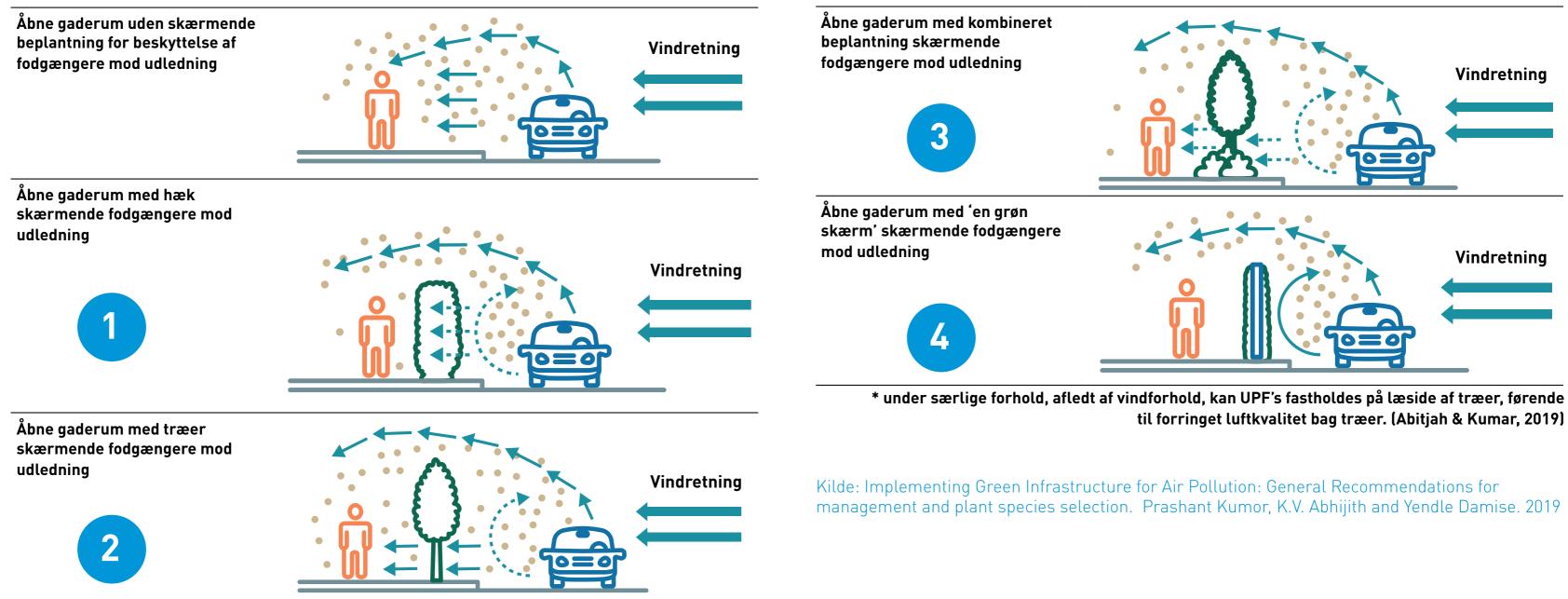

og partikelantallet er altid over KBH baggrundsniveauet

*Data indsamlet torsdag d.18 juni 2020, i tidsrummet 07:00 –18:00. (Solskin, 21-26 grader C)

de flere partikler

Luftforureningsprinciper

Afstandsregning for at reducere eksponering af luftforurening ved åbne veje


Scenarie 2: At beskytte folk længere væk fra vejen (feks. ved legepladsen)

Højde (m)

> Kilde: Implementing Green Infrastructure for Air Pollution: General Recommendations for management and plant species selection. Prashant Kumor, K.V. Abhijith and Yendle Damise. 2019

Grøn infrastruktur's effekter på åbne veje

til forringet luftkvalitet bag træer. (Abitjah & Kumar, 2019)

Planter som nedsætter luftforurening

Plantevalg er vigtig:

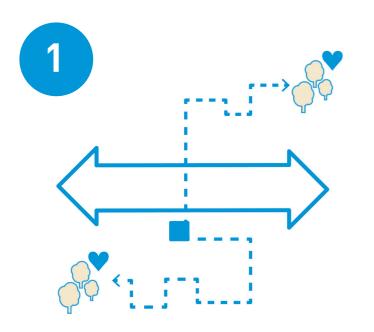
- 1. Stedsegrønne arter
- 2. Bredbladede arter
- 3. Arter dækkede med fine hår

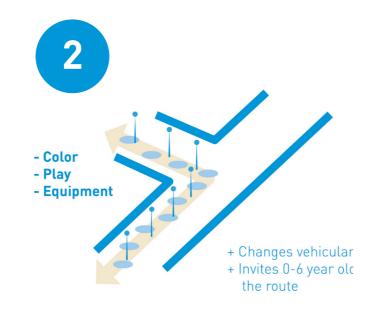
4. Arter med voks-dækkede blade

Tree species	Туре	Air pollution tolerance	bVOCs	Pollen	Canopy density	Comments	Image
Scots pine (Pinus sylvestris)	Evergreen conifer	Observed/ proven	Low	Low	Moderate	Early successional; native; good drought tolerance	
Stone pine (Pinus pinea)	Evergreen conifer	Observed/ proven	Low	Low	Dense	Non-native; a more compact option than <i>P. sylvestris</i> ; good drought tolerance	
Himalayan cedar (Cedrus deodara)	Evergreen conifer	Unknown/ unproven	Low	Low	Dense	Non-native; potentially a massive, broad tree; very good drought tolerance	
Swedish whitebeam (Sorbus intermedia)	Deciduous broadleaf	Observed/ proven	Low	Low	Moderate	Naturalised in UK; known salt tolerance; some tolerance to drought; leaf undersides are hairy	Ser.
Ulmus 'Rebella'	Deciduous broadleaf	Observed/ proven	Unknown	Low	Moderate	Non-native; medium-sized tree; resistant to Dutch elm disease; good drought and salt tolerance	
Wild cherry (Prunus avium)	Deciduous broadleaf	Observed/ proven	Low	Low	Moderate	Early successional; native; good drought and salt tolerance	
Callery pear (Pyrus calleryana)	Deciduous broadleaf	Observed/ proven	Low	Low	Dense	Non-native; proven viability for paved environments; good drought and salt tolerance	
Staghorn sumac (<i>Rhus</i> typhina)	Deciduous broaflead	Observed/ proven	Low	Low	Moderate	Early successional; non-native; small- to medium-sized tree; good drought and salt tolerance	
False acacia (Robinia pseudoacacia)	Deciduous broadleaf	Observed/ proven	Low	Low	Open	Early successional; non-native; potentially a large tree; good drought and salt tolerance; can be invasive	
Common hackberry (Celtis occidentalis)	Deciduous broadleaf	Observed/ proven	Low	Low	Moderate	Early successional; non-native; massive tree; some observed drought and salt tolerance	P

Suitable for hedging	Туре	Air pollution tolerance	bVOCs	Pollen	Canopy density	Comments	
Leyland cypress (x Cuprocyparis leylandii)	Evergreen conifer	Unknown/ unproven	Low	Low	Dense	Non-native; very fast-growing, and potentially very large; good drought and salt tolerance	
Common yew (Taxus baccata)	Evergreen conifer	Observed/ proven	Low	High, but dioecious	Dense	Late successional; native; versatile hedging plant, can be trained to form a barrier of any shape; good drought tolerance	
Box (Buxus sempervirens)	Evergreen broadleaf	Unknown/ unproven	Low	Low	Dense	Native to southern England; low-branching; good drought tolerance	
Western red cedar (<i>Thuja</i> <i>plicata</i>)	Evergreen conifer	Observed/ proven	Low	High	Dense	Late successional; non-native; good, dense hedging plant for a tall barrier; good drought tolerance	
Chinese juniper (Juniperus chinensis)	Evergreen conifer	Observed/ proven	Low	High, but can be dioecious	Dense	Early- successional; non-native; good drought tolerance	
Field maple (Acer campestre)	Deciduous broadleaf	Observed/ proven	Low	Low	Dense	Early successional; native; some observed drought and salt tolerance	
Amur maple (Acer tataricum subsp. ginnala)	Deciduous broadleaf	Observed/ proven	Low	Low	Dense	Late successional; non-native; good drought and salt tolerance; ornamental autumn colour	
Downey serviceberry (Amelanchier arborea)	Deciduous broadleaf	Observed/ proven	Low	Low	Moderate	Non-native; some observed salt tolerance; moderately sensitive to drought; ornamental autumn colour	
Common hawthorn (Crataegus monogyna)	Deciduous broadleaf	Observed/ proven	Low	Low	Dense	Early successional; native; good drought and salt tolerance	

Kilde: Implementing Green Infrastructure for Air Pollution: General Recommendations for management and plant species selection. Prashant Kumor, K.V. Abhijith and Yendle Damise. 2019


Undgå træer med Low UTAQS (Lav UTAQS bidrager til forurening, Høj-Medium UTAQS reducerer forurening)


Alder (Alnus glutinosa) Field Maple (Acer campestre) Hawthorn (Crataegus monogyna) Larch (Larix decidua) Laurel (Prunus laurocerasus) Lawson Cypress (Chamaecyparis lawsoniana) Norway Maple (Acer platanoides) Pine (Pinus nigra cvs.) Silver Birch	Apple (Malus spp.) Ash (Fraxinus excelsior) Cherry (Prunus avium) Common Lime (Tilia x europaea) Elder (Sambucus nigra) English Elm (Ulmus procera) Grey Alder (Alnus incana)	Hazel (Corylus avellana) Holly (Ilex aquifolium) Italian Alder (Alnus cordata) Leyland Cypress (xCupressocyparis leylandii) Lilac (Syringa vulgaris) Rowan (Sorbus aucuparia) Sycamore (Acer pseudoplatanus)	Aspen (Populus th Crack Wi (Salix frag English O (Quercus r Goat Will (Salix capr Red Oak (Quercus r Sessile Oa (Quercus p White Wil
(Betula pendula) High UTAQS	Medium UTAQS		(Salix alba Low UTA

us tremula)
Willow
ragilis)
1 Oak
us robur)
Villow
aprea)
ak
us rubra)
Oak
us petraea)
Willow
ılba)

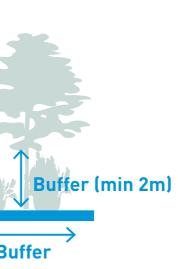
UTAQS

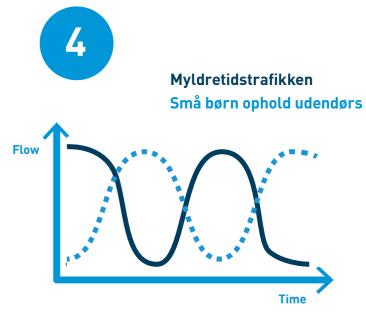
Trivsels zoner - strategier som kan bruges i Hulgårdsplads For at minimere eksponering til luftforurening

Kampange om 'renere ruter' i området

Et forbundet netværk bestående af sikre gader (som alternativ til Frederikssundsvej)

Skiltning og info om hvor der er ren luft


Vejledning så folk selv kan vælge 'renere ruter' og steder


Buffer Renere gadeluft med beplantinger

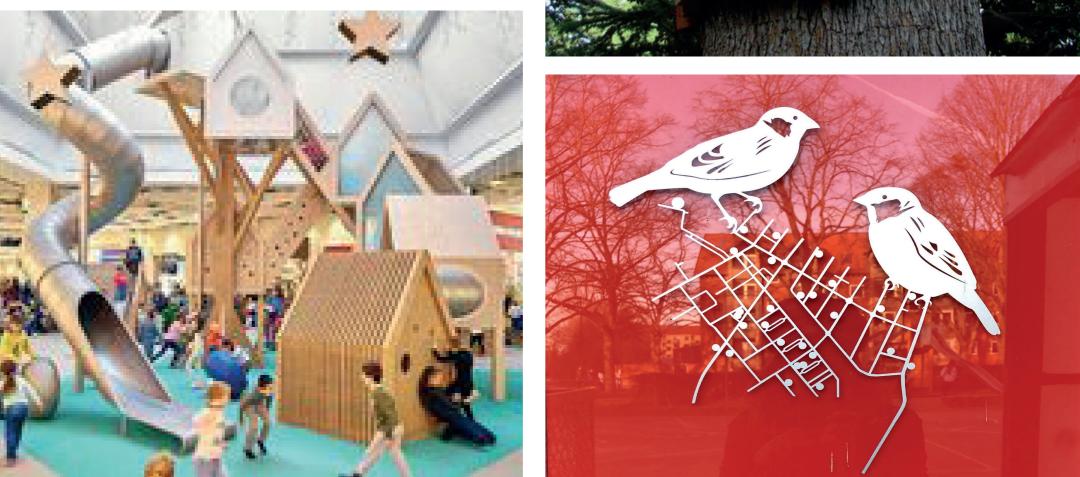
Trees

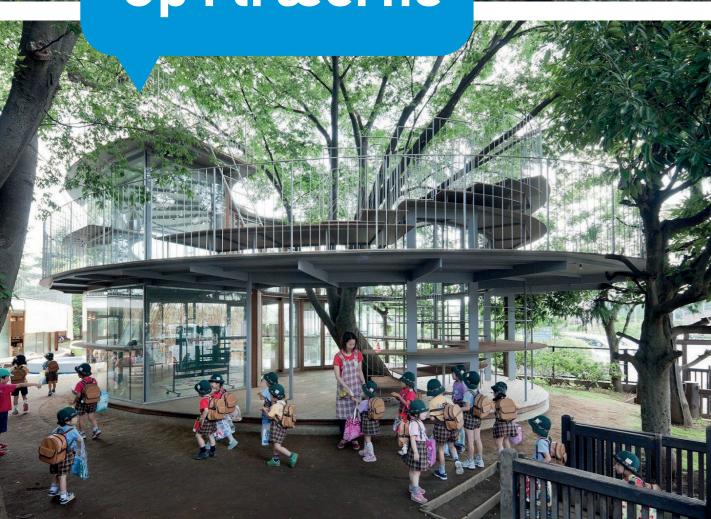
En grøn buffer mod forurening der kommer fra Frederikssundsvej

3

Tidsstyring i forhold til luftkvalitet

Reguler børnenes udendørsaktiviteter efter vindretninger, luftforureningsdata og myldretidstrafik


Byrum Legepladsens ny identitet

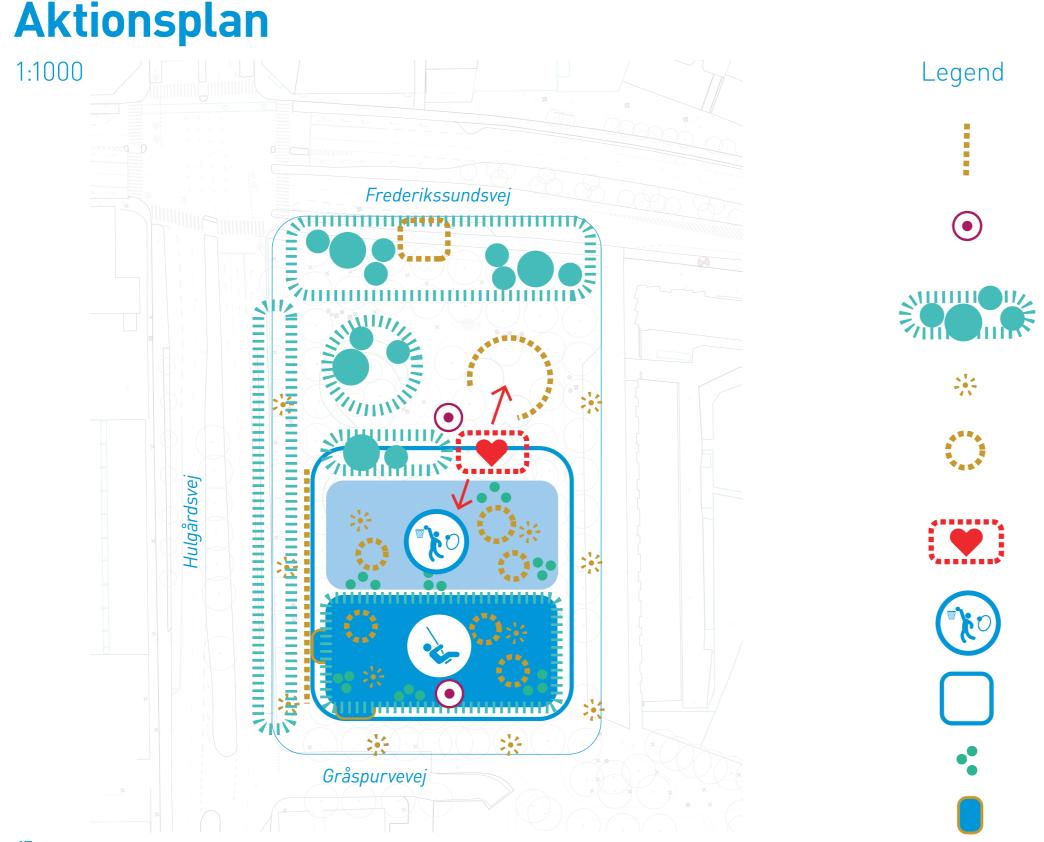

Fugle Legepladsen

Op i træerne

Klatremuligheder

Motorik på prøve

Naturlegeplads



Læring

Byliv + Byluft + Byrum Konkrete indsatser for pladsen

Installere gennemsigtige, interaktiv afskærmning mod luftforurening i områder hvor passiv overvågning er vigtig.

Installere skiltning/vindinstallationer med digitalt info om luftforureningsdata, koplede til luftforurenings Apps og fremhæve legepladsens indgange

Beplante pladsen langs Frederikssundsvej med nye stedsegrønne planter og skabe en grøn bufferzone mod luftforurening

Opgradere belysning over hele pladsen

Installere nye unikke legeredskaber (med indbygget beskyttelse mod luftforurening fra Frederikssundsvej hvor muligt)

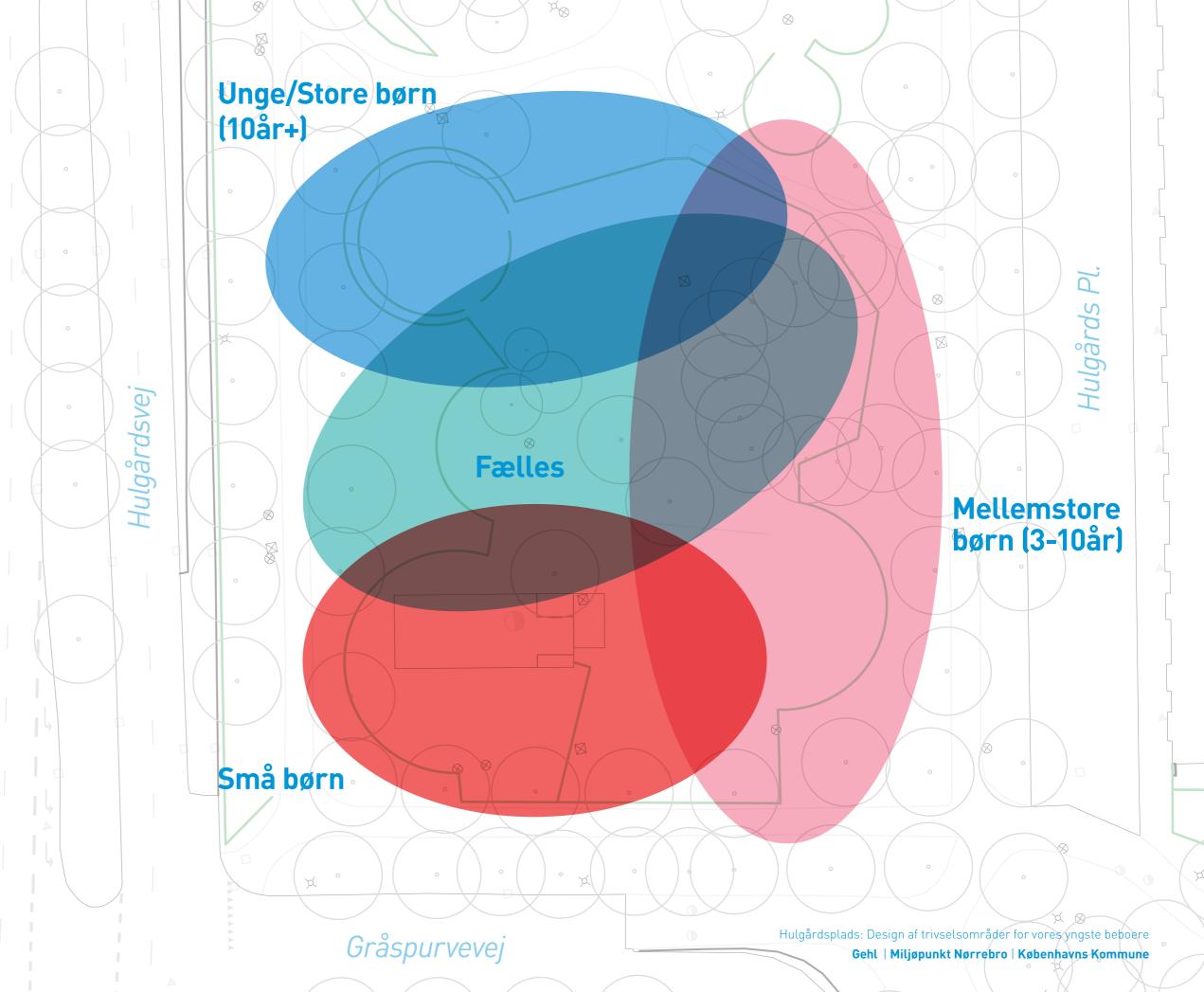
Skab et nyt socialt hjerte (feks. et cafetårn eller lign.) som binder legeområdet og pladsen sammen, og som aktiverer/ belyse området om aftenen

Opdel legepladsen i aldersrelaterede zoner for at beskytte de små mod pladsens støj og dårlig luft

Udnytte de uudnyttede områder i øst og vest af legepladsen og fjerne 'gemmestederne'

Introducere flere planter i børnehøjde for at øge sanselige oplevelser og pladsens biodiversitet

Integrerer skure ind i hegnet for at skabe mere plads til leg


Hulgårds legeplads Legeredskaber + Aldersrelaterede Zoner

Legeplads programmering og legeredskaber Konkrete ønsker fra LU spørgeskema

Aldersrelaterede Legezoner

1:500

. .

Huske de ældre børn

Hjemmelavet møbler

Natur!

Et tag

Pynt, farve og lys

Strøm til mobilen FØTEX

m

Aktiviteter

A LOOL

STATION

........

Forskellige siddepladser

Sund mad

Visualisering

Fremtidens Hulgårdsplads

UDKAS1

Gehl — Making Cities for People